199 research outputs found

    Observability and Decentralized Control of Fuzzy Discrete Event Systems

    Full text link
    Fuzzy discrete event systems as a generalization of (crisp) discrete event systems have been introduced in order that it is possible to effectively represent uncertainty, imprecision, and vagueness arising from the dynamic of systems. A fuzzy discrete event system has been modelled by a fuzzy automaton; its behavior is described in terms of the fuzzy language generated by the automaton. In this paper, we are concerned with the supervisory control problem for fuzzy discrete event systems with partial observation. Observability, normality, and co-observability of crisp languages are extended to fuzzy languages. It is shown that the observability, together with controllability, of the desired fuzzy language is a necessary and sufficient condition for the existence of a partially observable fuzzy supervisor. When a decentralized solution is desired, it is proved that there exist local fuzzy supervisors if and only if the fuzzy language to be synthesized is controllable and co-observable. Moreover, the infimal controllable and observable fuzzy superlanguage, and the supremal controllable and normal fuzzy sublanguage are also discussed. Simple examples are provided to illustrate the theoretical development.Comment: 14 pages, 1 figure. to be published in the IEEE Transactions on Fuzzy System

    A modified quantum adiabatic evolution for the Deutsch-Jozsa problem

    Full text link
    Deutsch-Jozsa algorithm has been implemented via a quantum adiabatic evolution by S. Das et al. [Phys. Rev. A 65, 062310 (2002)]. This adiabatic algorithm gives rise to a quadratic speed up over classical algorithms. We show that a modified version of the adiabatic evolution in that paper can improve the performance to constant time.Comment: 2 pages, no figur

    (Un)decidable Problems about Reachability of Quantum Systems

    Full text link
    We study the reachability problem of a quantum system modelled by a quantum automaton. The reachable sets are chosen to be boolean combinations of (closed) subspaces of the state space of the quantum system. Four different reachability properties are considered: eventually reachable, globally reachable, ultimately forever reachable, and infinitely often reachable. The main result of this paper is that all of the four reachability properties are undecidable in general; however, the last three become decidable if the reachable sets are boolean combinations without negation
    corecore